Presence of *Gasterophilus* Species in Horses in Van Region

Nalan ÖZDAL¹ Kamile BİÇEK³ Özlem ORUNÇ² Serdar DEĞER¹

¹ University of Yuzuncu Yil, Faculty of Veterinary Medicine, Parasitology Dept., Van, Turkey
² University of Yuzuncu Yil, Faculty of Medicine, Van, Turkey

Received: 30.03.2010 Accepted: 13.04.2010

SUMMARY

Ten horses aged 3-4 from rural Van region in the Eastern border of Turkey were examined post-mortem for the presence of *Gasterophilus* larvae from December 2008 to March 2009. Stomachs and intestines were removed according to the suitable necropsy techniques and checked for *Gasterophilus* species. Three horses were infected by larvae of *Gasterophilus* spp. and one second stage larvae (L2) and 265 third stage larvae (L3) collected from infested horses. Three species of *Gasterophilus* were identified with the following total larvae number and rate, respectively: *Gasterophilus nasalis* (182 / 68.42%), *Gasterophilus intestinalis* (76 / 28.57%), *Gasterophilus inermis* (8 / 3%).

Key Words

Gasterophilus, Horse, Van

INTRODUCTION

Larvae of flies belonging to the genus *Gasterophilus* (Diptera: Oestridae) are common obligate parasites in the gastrointestinal tract of equine (including horses, donkeys and zebras) and cause gastrointestinal myiasis. Inseminated females deposit their eggs on the hosts' hair at different locations depending on the species of *Gasterophilus*. *Gasterophilus pecorum* is an exception as females lay their eggs on grass, leaves and stems of plants. Larvae at the first stage reach the oral cavity of horses passively (*G.intestinalis, G.pecorum*) or actively. The larvae stay in the oral cavity for some time, and are then followed by instars, and as larvae at the second stage inhabit typical sites such as the stomach and duodenum where they grow and transform into the third stage larvae, which leave the host after a few months and then metamorphose into chrysalis from which insects emerge into the environment (Zumpt 1965; Soulsby 1982).

These larvae use their anterior spines and mouth hooks to attach to the wall of the gastrointestinal tract. Generally, gasterophilesis is characterized by difficulties in swallowing (throat localization of the immature stages), gastro and intestinal ulcerations, gut obstructions or volvulus, rectal prolapses, anaemia, diarrhoea and digestive disorders (Waddell 1972; Dart et al. 1987; Principato 1988; Cogley and Cogley 1999; Sandin et al. 1999; Sequeira et al. 2001). Perforation or rupture of the gastrointestinal tract with resulting peritonitis has been documented as sequelae of *Gasterophilus* infection (Lockhart 1915; Oyarzum 1939; van der Kolk et al. 1989). They also have some zoonotic potential as they are occasionally reported to affect humans, where they are found subcutaneously or in the digestive tract (Zumpt 1965; Royce et al. 1999; Anderson 2006).

Seven of the nine known *Gasterophilus* species, were described in Turkey, namely *G.intestinalis, G.nasalis, G.haemorrhoidalis, G.pecorum, G.inermis, G.nigricornis, G.meridionalis* (Sayın and Mimioğlu 1968; Mercivenci 1970; İça and Yıldırım 2005; Gökşen et al. 2008). In Turkey, data on the prevalence and the presence of *Gasterophilus* larvae in equine are limited. The objective of the present study was to determine the presence of *Gasterophilus* species in horses living in rural region of the Eastern border of Turkey.

MATERIALS and METHODS

This study was performed using ten native horses died due to various reasons from December 2008 to March 2009. All horses lived in rural Van region in the Eastern border of Turkey and are used as pack animal under difficult conditions. The age and sex of each animal were recorded, but no information was available on the history of the horses, pasture, anti-parasitic treatment and cause of death.

After removal of the gastrointestinal tract at autopsy, the stomach and intestines were examined in detail to determine the presence of *Gasterophilus* larvae. The stomach was opened along the greater curvature from the
and were stored in 70% ethanol.

RESULTS

The larvae of Gasterophilus spp. were found in three (30%) of the ten horses autopsied. Three species of Gasterophilus were identified: Gasterophilus intestinals, Gasterophilus nasalis and Gasterophilus inermis. All infestation were mix. Two of infested horses were infected with G.intestinals and G.nasalis, the other were infested with G.nasalis and G.inermis. When taking into account total larvae number collected infested animals, G.nasalis was the most common species (68.42%) followed by G.intestinals (28.57%) and G.inermis (3%). (Table 1). The post mortem examination of the horses revealed the occurrence of 3nd instars of Gasterophilus spp. larvae dominated. The 2nd instars larvae were found only one number in one infected horse that was G.intestinals. A total of 265 third stage larvae (L3) were collected from infected horses. Gasterophilus larvae collected were located in the stomach and the duodenum of each of them. Infected three horses harbored 114, 81 and 71 larvae (Table 1). The geometric mean intensity of bot larvae were 88.66.

Because all horses made post mortem examination was at same sex (female) and age range (3-4 years), the influence of the sex and age to gasterophilosis could not be explained.

Gasterophilus species and larval number for each infested horses are shown in Table 1.

![Figure 1. Crater-like ulcerative lesions and 3rd instars Gasterophilus larvae on the horse stomach mucosal membrane](image)

Table 1. Gasterophilus species and larval number for each infested horses

<table>
<thead>
<tr>
<th>Infested horses</th>
<th>G.nasalis</th>
<th>G.intestinals</th>
<th>G.inermis</th>
<th>Total larvae number</th>
</tr>
</thead>
<tbody>
<tr>
<td>No 1.</td>
<td>85</td>
<td>29</td>
<td>-</td>
<td>114</td>
</tr>
<tr>
<td>No 2.</td>
<td>34</td>
<td>47</td>
<td>-</td>
<td>81</td>
</tr>
<tr>
<td>No 3.</td>
<td>63</td>
<td>-</td>
<td>8</td>
<td>71</td>
</tr>
<tr>
<td>Total</td>
<td>182 (68.42)</td>
<td>76 (28.57)</td>
<td>8 (3)</td>
<td>266</td>
</tr>
</tbody>
</table>

DISCUSSION

The prevalence of botfly larvae in animals poses a serious epizootic and economic problem in several world areas. The prevalence of Gasterophilus species has been investigated in different countries. They are currently worldwide distribution in horses (Drudge et al. 1975; Pandey et al. 1980; Edwards 1982; Sharir 1987; Sweeney 1990; Bernard et al. 1994; Hoglund et al. 1997; Agneessens et al. 1998).

Although Turkey is a suitable country in terms of climatic and ecological factors for spread of Gasterophilus species and most of the known Gasterophilus species including G.intestinals, G.haemorrhoidalis, G.nasalis, G.inermis, G.pectorum, G.meridionalis and G.nigricornis were previously introduced in Turkey, studies on the presence and prevalence of these species in different regions of Turkey are limited. In Turkey, bot fly larvae were reported in Ankara (Sayın and Mimiğiolu 1968; İça and Yıldırım 2005), Bursa (Tınar et al. 1994) and Urfa (Gökçen et al. 2008). Gasterophilus spp. larvae were identified in three (30%) of the ten horses autopsied in this study. This rate is similar to those of in Ankara (33% - Sayın and Mimiğiolu 1968; 34% - İça and Yıldırım 2005), higher than in Urfa (9.82% - Gökçen et al. 2008). In other studies done in various regions of the world, prevalence of infestation ranged from 9% to 100% including 9% in Germany (Ribbeck et al. 1983), 11.1% in Israel (Sharir et al. 1987), 12.3% in Sweden (Hoglund et al. 1997), 34% in France (Bernard et al. 1994), 43% in Ireland (Sweeney 1990), 53% in England and Wales (Edwards 1982), 58% in Belgium (Agneessens et al. 1998), 65% in Switzerland (Brocard and Pfister 1991), 82.2% in Italy (Otranto et al. 2005), and 98.7% in Kentucky, USA (Drudge et al. 1975), 100% in Morocco (Pandey et al. 1980).

While G.intestinals (De Geer, 1776) and G.nasalis (Linnaeus, 1758) are distributed worldwide and are often the only species reported in many parts of the New World (e.g., United States and in New Zealand) (Schooley et al. 1977; Kettle 1974), the remaining species are only reported in very limited areas of Europe, Eastern Countries including central Italy (Zumpt 1965; Principato et al. 1984; Egri et al. 1995) and Africa (Horak et al. 1984). The dominance of these two Gasterophilus species larvae in the present study is similar to that previously reported from horses in Italy (Principato 1989; Otranto et al. 2005) and from donkeys in Northern Jordon (Mukbel et al. 2001), from horses and donkeys in Ankara (İça and Yıldırım 2005), from Arabian Horses in Urfa (Gökçen et al. 2008), from horses in Poland (Studzińska and Wojcieszak 2009). Principato (1989) reported that during four seasons of observation (1983-1986) the number of G.inermis,
G. pecorum and G. haemorrhoidalis decreased relative to G. intestinalis and G. nasalis species. These differences in the species composition, prevalences and larval burdens of Gasterophilus spp. in different countries are probably due to ecological conditions, management factors (e.g., pharmaceutical treatments, different animal husbandry), the host (e.g., genetic differences, race susceptibility) and the parasite (e.g., genetic differences, population composition).

In this study, the seasonal range of Gasterophilus spp. larvae was not attempted. But, almost larvae collected from all horses necropsied between December and March were third stage larvae. These results are consistent with data registered by Pawlas-Opiela and Soltysak (2007), by Studzińska and Wojciezak (2009) and by Göksen et al. (2008). Otranto et al. (2005) reported that L3 of G. intestinalis and G. nasalis were found throughout the observation period, with the lowest mean intensities of L3 from September to November for both species and the highest mean intensities from January to August. Similarly, in central Italy, the highest incidence of G. intestinalis and G. nasalis L3 was noted in February–March with a decrease in the following months (Principato 1989).

There is no evidence for a significant relationship between prevalence and mean intensity with age and sex of the host (Draber-Moňko 1970; Pfister and Brocard 1996; Agneessens et al. 1998; Mukbel et al. 2001; Romaníuk and Sarnska 2002; Göksen et al. 2008). But, the higher prevalence in female than male animals was reported by some authors (Merdivenci 1970; Ica and Yildirim 2005). Moreover, Edwards (1982) reported that prevalence of infection and mean larval burdens declined with increasing age of host. All horses in present study were at same sex (female) and age range. Under such circumstances, the correlation between the prevalence of gasterophilosis and the sex and age may be misunderstood.

To decide at what state of gasterophilosis in horses in this region, works conducted on more animals must be done. But, infestation in the three of the ten horses autopsied cannot be underestimated and Gasterophilus infestation in Van province has been reported for the first time with the present study. Gasterophilosis in horses in this region may be probably affected by the perhaps not treatment with antiparasitic drugs, bad management factors such as poor maintenance conditions and to work under severe conditions, free grazing animals, which heighten to contact with female botflies, to live with other equine reservoiried to these larvae causing gastrointestinal myiasis.

REFERENCES

